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Abstract. A drawback to using local search algorithms to address NP-hard discrete
optimization problems is that many neighborhood functions have an exponential number of
local optima that are not global optima (termed L-locals). A neighborhood function � is
said to be stable if the number of L-locals is polynomial. A stable neighborhood function
ensures that the number of L-locals does not grow too large as the instance size increases
and results in improved performance for many local search algorithms. This paper studies
the complexity of stable neighborhood functions for NP-hard discrete optimization prob-
lems by introducing neighborhood transformations. Neighborhood transformations between
discrete optimization problems consist of a transformation of problem instances and a cor-
responding transformation of solutions that preserves the ordering imposed by the objec-
tive function values. In this paper, MAX Weighted Boolean SAT (MWBS), MAX Clause
Weighted SAT (MCWS), and Zero-One Integer Programming (ZOIP) are shown to be NPO-
complete with respect to neighborhood transformations. Therefore, if MWBS, MCWS, or
ZOIP has a stable neighborhood function, then every problem in NPO has a stable neigh-
borhood function. These results demonstrate the difficulty of finding effective neighborhood
functions for NP-hard discrete optimization problems.

Subject Classification: analysis of algorithms, computational complexity

Key words: Computational complexity, Local search algorithms, NP-hard discrete optimi-
zation problems

1. Introduction

Local search algorithms (Aarts and Lenstra, 1997) are used to address
hard discrete optimization problems. An instance I of a discrete optimi-
zation problem can be denoted as a two-tuple (SOL(I), m), where SOL(I)
is a countable solution space and m: SOL(I)→Q is the objective function.
A local search algorithm is a procedure that iteratively moves between
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solutions in search of an optimal or near-optimal solution of a discrete
optimization problem. A local search algorithm can be defined by a neigh-
borhood function and an acceptance probability. For every instance I of a
discrete optimization problem, a neighborhood function �(I, .): SOL(I )→
2SOL(I ) defines the movement through the solution space, where the current
solution must be a neighbor of the previous solution. An acceptance prob-
ability defines the probability that a neighboring solution is accepted to be
the next solution. The choice of neighborhood function can have a tremen-
dous impact on the effectiveness of a local search algorithm.

One consideration when choosing a neighborhood function is the number
of local optima that are not global optima induced by the neighborhood
function. Given a neighborhood function � and an instance I of discrete
maximization problem, a solution s ∈ SOL(I ) is a (strict) local optimum
if f (s)(>)�f (s ′) for all s ′ ∈�(I, s), and a solution s ∈ SOL(I ) is a global
optimum if f (s) � f (s ′) for all s ′ ∈ SOL(I ). Similar definitions hold for a
discrete minimization problem. A solution s is a (strict) L-local if s is a
(strict) local optimum that is not a global optimum. Local search algo-
rithms often become trapped at L-locals and are unable to continue to find
improving solutions. Many local search algorithms will be more effective if
the neighborhood function has fewer L-locals.

A drawback of using local search algorithms for NP-hard discrete
optimization problems is that many computationally efficient neighborhood
functions have a very large number of L-locals. For a given solution, a
polynomially computable neighborhood can be searched in polynomial time
for an improving solution or else it is concluded that the current solution
is a local optimum. It is necessary for a neighborhood function to be poly-
nomially computable to ensure that iterations of the local search algorithm
can each be completed in polynomial time. Based on the experiences of
numerous researchers, one can conjecture that most (and possibly all) poly-
nomially computable neighborhood functions for NP-hard discrete optimi-
zation problems have exponentially many L-locals (Rodl and Tovey, 1987;
Armstrong and Jacobson, 2003; Armstrong and Jacobson, 2005). Given a
discrete optimization problem A, a neighborhood function � for A is said
to be stable if � is computable in polynomial time with the property that
the number of L-locals is bounded above by a polynomial in the length of
problem instances. A stable neighborhood function ensures that the num-
ber of L-locals does not grow too large as the instance size increases.

This paper studies the complexity of finding effective neighborhood
functions for several NP-hard discrete optimization problems. New types
of reductions between discrete optimization problems are introduced that
consist of a transformation of instances between the problems and a cor-
responding transformation of solutions that preserves the ordering imposed
by the objective function values. The new reductions facilitate a method
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to study the complexity of neighborhood functions with certain desirable
properties. Order transformations between discrete optimization problems
are defined to preserve the objective function values over problems’ solution
spaces. Order transformations are defined such that the following holds: if
problem A order transforms to problem B, then for every instance I of A

there exists an instance f (I) (which can be constructed in polynomial time
in the length of I ) of B such that the number of global optima in I equals
the number of global optima in f (I), the number of solutions with the
second best objective function value for I equals the number of solutions
with the second best objective function value for f (I), and so on, up to
the worst solution value for the instance I . There are few results in the lit-
erature regarding transformations between discrete optimization problems
that preserve the ordering imposed by the objective function. Ausiello et al.
(1980) define a reduction between convex discrete optimization problems
that preserves the ordering imposed by the objective function.

A restricted version of order transformations is introduced, termed neigh-
borhood transformations. Neighborhood transformations are used to study
the complexity of polynomially computable neighborhood functions with a
limited number of L-locals. It is shown that if A neighborhood transforms
to B and B has a stable neighborhood function, then A has a stable neigh-
borhood function. Also, if A neighborhood transforms to B and B has a
polynomially computable neighborhood function in which the number of
L-locals is bounded above by a fixed integer k (�0), then A has a polynomi-
ally computable neighborhood function in which the number of L-locals is
bounded above by k. Hence, the neighborhood transformation also preserves
inclusion in PGS (Jacobson and Solow, 1993); i.e., if A neighborhood trans-
forms to B and B ∈ PGS, then A∈ PGS. Informally, the class of problems
PGS is defined to be those discrete optimization problems for which there
exists a polynomially computable neighborhood function with zero L-locals.
The neighborhood transformation also preserves the property of a unique
global maximum (or minimum), which means that if problem A neighbor-
hood transforms to a problem B, then every instance I of A with a unique
global maximum can be mapped (in polynomial time) to an instance f (I)

of problem B with a unique global maximum. As a result of this property, it
may be possible to use the neighborhood transformation to study the com-
plexity of optimization problems with unique global optima (note that this
is not addressed in this paper), which has been addressed by Pardalos and
Jha (1992) and Prokopyev et al. (2005), who prove that quadratic 0–1 pro-
gramming and hyperbolic 0–1 programming, respectively, are NP-hard even
when instances are restricted to have unique global optima.

Several problems are shown to be NPO-complete with respect to order
transformations and neighborhood transformations. Problem B ∈NPO is
said to be NPO-complete with respect to a transformation, denoted by
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∝, if for every problem A ∈ NPO, A ∝ B. Generally, complete problems
form a class of the hardest problems with respect to a certain property.
In particular, the NPO-complete problems studied in this paper will be
the hardest discrete optimization problems in terms of formulating stable
neighborhood functions and polynomial time improvement algorithms. In
this paper, MAX Weighted Boolean SAT (MWBS), MAX Clause Weighted
SAT (MCWS), and Zero-One Integer Programming (ZOIP) are all shown
to be NPO-complete with respect to neighborhood transformations; these
three problems will be formally defined in Section 2. Armstrong (2002) also
shows that several other problems, such as MAX Weighted Independent
Set (MWIS) and MAX Weighted Clique (MWC), are NPO-complete with
respect to neighborhood transformations. Therefore, if any one of MWBS,
MCWS, ZOIP, MWIS, or MWC has a stable neighborhood function, then
every problem in NPO has a stable neighborhood function.

The research on approximation preserving reductions (see Ausiello et al.,
1995 for a survey) has some similarities with the work presented in this
paper. The set of problems APX consist of all problems A in NPO for
which there exists a polynomial time r-approximate algorithm (Ausiello
et al., 1999) for some r � 1. Ausiello and Protasi (1995) introduce a new
class of optimization problems called Guaranteed Local Optima (GLO).
A maximization (minimization) problem is in GLO if there is a con-
stant h such that the value of all local optima, with respect to some
defined neighborhood function, is at least 1/h (at most h) times the
value of global optima. The set of optimization problems GLO are com-
pared to the set of optimization problems APX by Ausiello and Protasi
(1995). The set of problems PTAS (polynomial time approximation scheme)
contains all problems in NPO for which there exist a polynomial time
r-approximate algorithm for all r > 1. Several reductions between discrete
optimization problems have been defined to preserve inclusion in APX or
PTAS. For example, Crescenzi and Trevisan (2000) introduce a new poly-
nomial time approximation scheme that preserves approximations, called
PTAS-reducibility, which generalizes other transformations that preserve
approximations. They show that if A PTAS-reduces to B and B ∈ PTAS,
then A∈ PTAS. Crescenzi and Trevisan (2000) also show that MAX-SAT
is APX-complete under the PTAS-reducibility. Some problems have been
shown to be NPO-complete with respect to an approximation preserving
reduction. Ausiello et al. (1995) show that MWBS is NPO-complete with
respect to an approximation preserving reduction. It should be noted that
all of the approximation preserving reductions given in the literature do
not preserve order. Also, order transformations defined in this paper do not
preserve approximability.

An open research question is to determine if PGS equals PS or,
otherwise, is it possible for an optimization problem to be in PGS and
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not solvable in polynomial time (note that PS ⊆PGS). A limited number
of papers (Grotschel and Lovasz, 1995; Schulz et al., 1995; Schulz and
Weismantel, 1999) report results showing that for particular NP-hard dis-
crete optimization problems, being in PGS is sufficient for the problem to
be polynomially solvable. The class of problems PLS (Johnson et al., 1988)
is similar to the class PGS in that both classes contain problems where
solutions can be improved in polynomial time until the “goal” is reached
(where the “goal” for PGS is reaching a global optimum and the goal for
PLS is reaching a local optimum). Johnson et al. (1988) introduce the class
PLS to study the complexity of finding local optima for a neighborhood
function of an NP-hard problem (e.g., can local minima of the 2-change
neighborhood for the traveling salesman problem be found in polynomial
time?). The results in this paper differs from those reported in Johnson
et al. (1988) in that neighborhood transformations are used to analyze the
complexity of finding neighborhood functions for NP-hard problems with
certain properties (e.g., does the traveling salesman problem have a stable
neighborhood function?).

In many cases, the average-case performance of local search algorithms
has been very good (Hoos and Stutzle, 2004). The work in this paper
consists of a worst-case analysis and thus, does not contradict the exten-
sive amount of literature on the effective average-case performance of local
search. Furthermore, if a NP-hard discrete optimization problem does not
have any stable neighborhood functions, this does not necessarily imply
that all local search algorithms will perform poorly. Local search algo-
rithms that use random-restart techniques and allow hill climbing moves
(i.e., moves to solutions with worse objective function value) are designed
to help mitigate the problems associated with exponentially many local
optima. The purpose of this paper is to develop a better understanding
of the properties of neighborhood functions of NP-hard discrete optimi-
zation problems. An ultimate goal is to discover the properties of neigh-
borhood functions that are inherent to NP-hard discrete optimization
problems.

The paper is organized as follows: Section 2 provides formal defini-
tions and background material needed to develop the main results. Order
transformations, neighborhood transformations, and several discrete opti-
mization problems are formally defined in Section 2. Section 3 presents
fundamental theoretical results and properties of the order transformation.
In particular, theoretical results are given that demonstrate the properties
preserved by the order transformation. Section 4 provides results about the
neighborhood transformation and several discrete optimization problems
are shown to be NPO-complete with respect to neighborhood transforma-
tions. Section 5 provides concluding comments and directions for future
research.
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2. Definitions and Background

To describe the results, several definitions are needed. An NPO problem
will be formally defined since the notation needed to define it will be used
throughout the remainder of the paper. An NPO problem A is a four-tuple
(DA, SOL, m, goal) such that:

(1) DA is the set of instances of A and it is recognizable in polynomial
time in the length of problem instances.

(2) Given an instance I ∈ DA, SOL(I ) denotes the set of feasible solu-
tions of I . Furthermore, there exists a polynomial function p such
that for any s ∈ SOL(I ), |s| � p(|I |). The solutions can also be rec-
ognized in time polynomial in the length of I .

(3) For each instance I and solution s ∈ SOL(I ), m(I , s) denotes the
measure or objective function value of solution s. The function m is
also computable in time polynomial in the length of I .

(4) goal ∈ {max,min} represents whether the problem is a minimization
or maximization problem.

Let NPO+ denote the set of NPO problems in which, for instances I , a
solution s ∈ SOL(I ) can be generated in polynomial time in the length of
I . For every problem A= (DA, SOL, m, goal) in NPO, there exists a corre-
sponding nondeterministic Turing machine NA such that for every instance
I ∈DA, NA executes the following algorithm in polynomial time:

Algorithm 1 (Ausiello et al., 1995):
begin

guess a solution s ∈{0,1}p(|I |);
if s ∈ SOL(I ) then output m(I, s); else abort

end

This algorithm guesses a solution and computes the objective function
value of any feasible solution. This algorithm is an abstract definition that
is used in a proof of a theorem in Section 4.

For every instance I of a discrete optimization problem A= (DA, SOL, m,
goal), a neighborhood function �(I, s)⊆ SOL(I ) maps each solution s ∈SOL(I )

into a subset of the solution space. The order of a solution s is the rank of the
solution in terms of the objective function values. For example, if I is an instance
of a maximization problem A = (DA, SOL, m, goal) in which m(SOL(I )) =
{2,4,7,9,12}, then any solution s such that m(I, s)= 12 will have an order of
one, any solution s with m(I, s)= 9 has an order of two, and so on, such that
any solution s with m(I, s)=2 has an order of five.

The purpose of this paper is to develop transformations between dis-
crete optimization problems that preserve the local structure or ordering
imposed by the objective function. These are called order transformations.
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A neighborhood transformation, which is a restricted version of an order
transformation, preserves polynomially computable neighborhood functions
from one discrete optimization problem to another discrete optimization
problem. Throughout the remainder of this paper, it is assumed that the
discrete optimization problems are maximization problems. Therefore, any
problem in NPO can be represented by a three-tuple (DA, SOL, m). Let A

and B be two discrete maximization problems in NPO. The problem A=
(DA, SOLA, mA) order transforms to B = (DB , SOLB , mB), if there exists
two computable functions f and q such that the following holds:

(1) For each instance I of A, f (I) is an instance of B and f is comput-
able in polynomial time in the length of I .

(2) For each instance I of A and for each s ∈ SOLA(I ), q(I, s) ∈
SOLB(f (I )). For simplicity, denote q(I, s) by q(s). For each fixed I ,
the function q(I, .) is one-to-one and satisfies the following properties:

(a) it can be determined (in polynomial time in the length of instance
I ) if a solution sB ∈ SOLB(f (I )) is also in q(SOLA(I )),

(b) for every instance I of A and for every s, s ′ ∈ SOLA(I), if
mA(I, s)(>)�mA(I, s ′), then mB(f (I), q(s))(>)�mB(f (I), q(s ′)).

(c) for every s ∈ q(SOLA(I)) and s ′ ∈ SOLB(f (I )) – q(SOLA(I)),
mB(f (I), s)�mB(f (I), s ′).

The purpose of condition 2c is to ensure that for each instance I , the set
of solutions that are not in q(SOLA(I)) have an objective function value
no larger than any solution in q(SOLA(I)). This condition (in relation to
the other conditions) forces the local structure of instance f (I) to be the
same as the instance I , except that the instance f (I) can have more solu-
tions than the instance I . If the function q and its inverse are computable
in polynomial time in the length of I , the transformation is said to be a
neighborhood transformation. The order transformation and neighborhood
transformation are both transitive.

Several discrete optimization problems that are used in the paper will
now be described. For the rest of this paper, let zero (0) denote a false lit-
eral or clause and one (1) denote a true literal or clause.

MAX SAT: Given m clauses, over n Boolean variables X ={x1, x2, . . . , xn},
find a truth assignment t : X →{0,1} that maximizes the number of satisfied
clauses.

Two related discrete optimization problems are now described.
MAX Clause Weighted SAT (MCWS): Given a set of clauses C =
{c1, c2, . . . ., cm}, with corresponding weights W ={w1,w2, . . . ,wm}, over the
Boolean variables X = {x1, x2, . . . , xn}, find a truth assignment t :X →{0,1}
that maximizes the sum of the weights of the satisfied clauses.
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To define MAX Weighted Boolean SAT, the following definition is
needed. A Boolean formula is an expression that can be constructed from
a set of Boolean variables x1, x2, . . . , xn and using ∧ (AND), ∨ (OR), and
∼ (NOT) operators.

MAX Weighted Boolean SAT (MWBS): Given a Boolean formula F

over the Boolean variables X = {x1, x2, . . . , xn} with corresponding weights
W ={w1,w2, . . . ,wn}, find a truth assignment t :X→{0,1} that satisfies the
Boolean formula F such that

∑n
i=1 wit (xi) is maximized.

Given an instance I of MWBS, the set of solutions SOL(I ) consists
of all truth assignments that satisfy F . Note that MAX Clause Weighted
3-SAT (MCW3S) is a particular case of MCWS in which every clause in
C has exactly three literals, and MAX Weighted Boolean 3-SAT (MWB3S)
is a particular case of MWBS in which the Boolean formula F is in 3-con-
junctive normal form (3-CNF).

Two other discrete optimization problems are now defined.
(0–1) Knapsack: Given vectors s = (s1, s2, . . . , sn), c = (c1, c2, . . . , cn), where
si , ci ∈Z+, and capacity B ∈Z+, find a vector x = (x1, x2, . . . , xn)∈ {0,1}n
that maximizes

∑n
i=1 cixi subject to

∑n
i=1 sixi �B.

Zero-One Integer Programming (ZOIP): Maximize
∑n

i=1{cixi} subject to∑n
j=1 aijxj � bi , for i = 1,2, . . . ,m, where X = (x1, x2, . . . , xn) ∈{0,1}n, and

the ci , aij are integers.

3. Fundamental Results Regarding Order Transformations

In this section, fundamental results regarding the order transformations
will be given. Suppose A neighborhood transforms to B. The following
result is noted and can be used to develop a general result given by Prop-
osition 1: for every polynomially computable neighborhood function for B

there exists a corresponding polynomially computable neighborhood func-
tion for A such that for every instance I of A, there is a polynomially
computable instance f (I) of B, where the number of L-locals and strict
L-locals for instance I is bounded above by the number of L-locals and
strict L-locals, respectively, for instance f (I) of B. Also, sufficient condi-
tions for the existence of a neighborhood transformation from one problem
to another problem will be given. One of these sufficient conditions will be
used in Section 4 to show that the (0-1) knapsack neighborhood transforms
to another NP-hard discrete optimization problem.

Suppose A = (DA, SOLA,mA) neighborhood transforms to B = (DB ,
SOLB,mB) such that f and q denote the transformation of instances of
A to instances of B and the corresponding transformation of solutions,



ANALYZING THE COMPLEXITY OF GOOD NEIGHBORHOOD FUNCTIONS 227

respectively. Given a neighborhood function � for B, define a neighbor-
hood function �f,q for A as follows:

for all I ∈DA and s ∈ SOLA(I),�f,q(I, s)={s ′:q(s ′)∈�(f (I ), q(s))}.

Since the functions f , q, and q−1 are all computable in polynomial time,
if � can be computed in polynomial time, then �f,q can be computed in
polynomial time for A.

Proposition 1 provides a general result on how polynomially computable
neighborhood functions are preserved by a neighborhood transformation
from one discrete optimization problem to another problem. The proofs of
all propositions in this section follow directly from the definition of neigh-
borhood transformations (Armstrong, 2002) and are, thus, omitted.

PROPOSITION 1. Let A and B be two discrete optimization problems
in NPO such that A neighborhood transforms to B. Furthermore, let
p2:Z+ →Z+ be a non-decreasing function. If B has a polynomially com-
putable neighborhood function such that the number of (strict) L-locals is
bounded above by p2(|I2|) for each instance I2 of B, then A has a poly-
nomially computable neighborhood function such that the number of (strict)
L-locals is bounded above by p2(p1(|I1|)) for each instance I1 of A, where
p1 is some polynomial function.

The result in Proposition 1 for neighborhood transformations will also
hold for local optima and strict local optima in place of L-locals and
strict L-locals. These results are not explicitly given since the difficulty in
addressing a discrete optimization problem with local search algorithms
arises out of the number of local optima that are not global optima rather
than the number of local optima (which also includes global optima). Note
that Proposition 1 implies that if there exists a stable neighborhood func-
tion for B, then A has a stable neighborhood function. Similarly, other
results can be obtained from Proposition 1. For example, if there exists a
polynomially computable neighborhood function for B that has no more
than k L-locals, then A has a polynomially computable neighborhood func-
tion with no more than k L-locals.

Propositions 2 and 3 delineate properties of a neighborhood transfor-
mation by noting the preservation of a polynomial time improvement
algorithm and the preservation of a polynomial time algorithm to find a
solution of a specified order or better.

PROPOSITION 2. Let A and B be two discrete optimization problems in
NPO such that A neighborhood transforms to B. If B ∈ PGS, then A∈ PGS.
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By Proposition 2, neighborhood transformations can be used to study the
complexity of polynomial time improvement of non-optimal solutions.

PROPOSITION 3. Let A∈ NPO+ and B ∈ NPO be two discrete optimiza-
tion problems such that A neighborhood transforms to B. If there exists a
polynomial time algorithm that can find a solution with order k, or less, for
instances of B, then there exists a polynomial time algorithm to find a solu-
tion with order k, or less, for instances of A.

The next two propositions provide sufficient conditions for the exis-
tence of a neighborhood transformation between two discrete optimization
problems.

PROPOSITION 4. Let A =(DA, SOLA, mA) and B = (DA, SOLA,mB) be
two discrete optimization problems in NPO, where for every I ∈ DA and
s ∈SOLA(I), mB(I, s)= a(I )mA(I, s)+ b(I ) such that a > 0 and b are func-
tions mapping instances of A to Z. Then A neighborhood transforms to B.

PROPOSITION 5. Suppose ϕ : R → R is an increasing function. Let A =
(DA, SOLA, mA) and B = (DA, SOLA, mB) be two discrete optimization
problems in NPO, where for every I ∈ DA and s ∈ SOLA(I), mB(I, s) =
ϕ(mA(I, s))+b(I ). Then A neighborhood transforms to B.

Proposition 4 states that there exists an order transformation between
discrete optimization problems when their objective functions are linearly
related. In the next two sections, it is shown that there exist neighborhood
transformations between problems that appear to have dissimilar objective
functions. Moreover, several problems are shown to be NPO-complete with
respect to neighborhood transformations.

4. Transformations that Preserve Local Structure

In this section, by using Proposition 4, an example will be given of a neigh-
borhood transformation from one discrete optimization problem to another
discrete optimization problem. Furthermore, MWBS, MCWS, and ZOIP
will be shown to be NPO-complete with respect to neighborhood transfor-
mations. From the propositions in Section 3, the following statements will
then hold: If there exists a polynomial time algorithm that can find a solu-
tion with order k, or less, of instances of MWBS, MCWS, or ZOIP, then
for every problem A in NPO+, there must exist a polynomial time algo-
rithm to find a solution of order k, or less, for instances of A. Also, if
there exists a stable neighborhood function for MWBS, MCWS, or ZOIP,
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then every problem in NPO has a stable neighborhood function. Lastly, if
any of the problems MWBS, MCWS, or ZOIP is in PGS, then every prob-
lem in NPO is also in PGS. Proposition 6 uses Proposition 4 to provide an
example of a neighborhood transformation from (0–1) knapsack to another
NP-hard discrete optimization problem.

PROPOSITION 6. Let k � 1 be an integer. Let A denote the discrete opti-
mization problem:

Maximize
∑n

i=1 cix
2
i subject to

∑n
i=1 sixi � B,k � xi � k+1, where

s = (s1, s2, . . . , sn), c = (c1, c2, . . . , cn), si, ci ∈ Z+, and B ∈ Z+. Then, (0–1)

Knapsack neighborhood transforms to A.
Proof. Suppose I is an instance of (0–1) Knapsack with n possi-

ble items. Let the instance I be denoted by s = (s1, s2, . . . , sn), c =
(c1, c2, . . . , cn), where si , ci ∈Z+, and integer B. Define the instance f (I) of
A by using the same parameters s, c, and B. Therefore, the instance f (I)

consists of n independent variables. The solution space of instance f (I)

can be represented in the same manner as the solution space for instance
I of problem A. Define the function q: {0,1}n → {k, k + 1}n such that for
each x ∈ {0,1}n, q(x)= k1 + x where 1 = (1,1, . . . ,1)∈Zn. Given a solution
y ∈{k, k +1}n for instance f (I) of A, the objective function value for y is
given by

∑n
i=1 ci(xi +k)2, where xi =yi – k.

Since (xi)
2 =xi , then

n∑

i=1

ci(xi +k)2 =
n∑

i=1

ci(k
2 +x2

i +2kxi)=
n∑

i=1

cik
2 + (2k +1)

n∑

i=1

cixi

Therefore, the objective function for the instance f (I ) can be written as a
linear combination, a(I )mKNAP(I, .)+b(I ), of the objective function mKNAP

for the instance I of (0–1) Knapsack, where a(I )>0. By Proposition 4, this
implies that (0–1) Knapsack neighborhood transforms to A.

The neighborhood transformation used in the proof of Proposition 6 is
between two similar discrete optimization problems. The restrictive nature
of neighborhood transformations does not prevent the development of
completeness results. Theorem 1 shows that MWBS is NPO-complete with
respect to neighborhood transformations by adapting a proof in Ausiello
et al. (1995).

THEOREM 1. MWBS is NPO-complete with respect to neighborhood trans-
formations.

Proof. Let A = (D, SOL, mA) be any problem in NPO. Without loss
of generality suppose that mA(I, s) � 0 for all I ∈ D and s ∈ SOL(I). The
proof will be complete by showing that A neighborhood transforms to
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MWBS. Let NA denote the nondeterministic Turing machine corresponding
to the discrete optimization problem A, as described in Section 2. Let
I be an instance of A. By using Cook’s Theorem (Cook, 1971), there
exists a Boolean formula ϕI such that there is a one-to-one correspondence
between the satisfying truth assignments of ϕI and the halting computa-
tion paths of NA(I ). Now, let s1, s2, . . . , sp be the Boolean variables that
describe a solution s ∈ SOL(I ). Also, let m1,m2, . . . ,ml denote the Boolean
variables on which NA(I) writes the value mA(I, s). Let qY and qN be the
Boolean variables that represent NA halting in a “yes” (s ∈ SOL(I )) state
and “no” (s /∈ SOL(I )) state, respectively. Note that the Boolean variables
mi , sj , qY , and qN will be part of the formula ϕI . For the Boolean variable
mi assign the weight 2l−i . For the Boolean variable qY assign the weight 2l.
Assign all the remaining Boolean variables a weight of zero. The instance
f (I) of MWBS is given by the Boolean formula ϕI and the corresponding
Boolean variables together with the weights specified above. Given a solu-
tion s ∈ SOL(I ) that results in a halting computation, define q(s) to be the
unique satisfying truth assignment for ϕI that corresponds to s (which can
be obtained by executing NA(I) on the input s). It then follows that the
objective function value of the solution q(s) in this created instance f (I) of
MWBS is exactly mA(I, s)+2l. Given a satisfying truth assignment t of the
Boolean formula ϕI , the solution q−1(s) is obtained by simply noting the
value of t (si) for all I . Therefore, the function q−1 is computable in time
polynomial in the length of I . Note that any satisfying truth assignment
t for the instance f (I) in which t (qY ) = 1 will have an objective function
value of at least 2l. Also, any truth assignment t ′ in which t ′(qY ) = 0 will
have an objective function value that is less than 2l. This implies that A

neighborhood transforms to MWBS.
Theorem 2 states that MWB3S is NPO-complete with respect to neighbor-

hood transformations. The proof of this theorem is omitted (see Armstrong,
2002) since it follows from Theorem 1 and a natural extension of the poly-
nomial transformation from SAT to 3-SAT (Garey and Johnson 1979).

THEOREM 2. MWB3S is NPO-complete with respect to neighborhood
transformations.

Theorem 3 shows that MCW3S is NPO-complete with respect to
neighborhood transformations by proving that MWB3S neighborhood trans-
forms to MCW3S.

THEOREM 3. MCW3S is NPO-complete with respect to neighborhood
transformations.
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Proof. The proof follows by showing that MWB3S neighborhood trans-
forms to MCW3S. Let C be a set of clauses in which each clause has exactly
three literals over the Boolean variables X={x1, x2, . . . , xn}, with weights wi

for each xi ∈X; this defines an instance I of MWB3S. Let X′ =X∪{(yi1, yi2) :
1� i �N}. Define the two sets of clauses C̄ ={(xi, yi1, yi2) : 1� i �n} and Ĉ =
{(x̄i, ȳi1, ȳi2), (x̄i, yi1, ȳi2), (x̄i, ȳi1, yi2), (xi, ȳi1, ȳi2), (xi, yi1, ȳi2), (xi, ȳi1, yi2) : 1
� i � n}. Let C ′ = C ∪ C̄ ∪ Ĉ,m = |C ∪ Ĉ|, and M = ∑n

i=1 wi . Define an
instance f (I) of MCW3S by using the set of clauses C ′ over the set of
Boolean variables X′ . The weights corresponding to the clauses in C ′ are
now specified. Let each clause in C and Ĉ have a weight of M. For each
clause (xi, yi1, yi2) in C̄, assign a weight of wi . Define the function q as fol-
lows: for each satisfying truth assignment t : X → {0,1}, let q(t) = t̄ where
t̄ : X′ → {0,1}, t̄(xi) = t (xi) for all xi ∈ X, and t̄ (y) = 0 for all y ∈ X′ – X.
By construction, for any truth assignment t : X → {0,1} that satisfies all of
the clauses in C, mMCW3S(f (I ), q(t)) = Mm + ∑n

i=1 wit (xi). Therefore, for
any two truth assignments t : X → {0,1} and t ′ : X → {0,1} that satisfy C,
if

∑n
i=1 wit (xi)(>)�

∑n
i=1 wit

′(xi), then mB(f (I), q(t))(>)�mB(f (I), q(t ′)).
Now, suppose that t̄ :X′ →{0,1}∈q(SOL(I )) and t̄ ′ :X′ →{0,1} /∈q(SOL(I )).
Since t̄ ′ /∈q(SOL(I )), then there exists y ∈X′ – X such that t̄ ′(y)=1 or t̄ ′ does
not satisfy C. In either case, it follows that one of the clauses in C ∪ Ĉ cannot
be satisfied. This implies that mMCW3S(f (I ), t̄ ′)�M(m – 1) +

∑n
i=1 wi =Mm.

Therefore, mB(f (I), t̄ ′) � Mm � mB(f (I), t̄). The transformation f of the
instances and the corresponding transformation q of the solutions can be
executed in polynomial time in the length of I . Furthermore, the solutions
in q(SOL(I )) can be recognized in polynomial time in the length of I , hence
MWB3S neighborhood transforms to MCW3S. By the transitivity of neigh-
borhood transformations and Theorem 2, MCW3S is NPO-complete with
respect to neighborhood transformations.

COROLLARY 1. MCWS is NPO-complete.
Proof. MCW3S is a special case of MCWS, hence the result directly fol-

lows from Theorem 3.

Theorem 4 shows that ZOIP is NPO-complete with respect to neighbor-
hood transformations by proving that MWB3S neighborhood transforms
to ZOIP.

THEOREM 4. ZOIP is NPO-complete with respect to neighborhood
transformations.

Proof. The proof follows by showing that MWB3S neighborhood trans-
forms to ZOIP. Start with an instance I of MWB3S, where this instance
consists of a set of clauses C ={c1, c2, . . . , cm}, where each clause in C has
exactly three literals, over a set of Boolean variables X = {x1, x2, . . . , xn}
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with a weight wi associated with each Boolean variable xi ∈X. An instance
f (I) of ZOIP is created which preserves the ordering imposed by the
objective function. Every Boolean variable xi will have a corresponding
Boolean variable in f (I), with this Boolean variable denoted using the
same notation. For each clause cj = (y1j , y2j , y3j ), the constraint

h(y1j )+h(y2j )+h(y3j )�1,

where h(yij )=
{

1−xk if yij is a negated literal of variable xk

xk if yij is a nonnegated literal of variable xk
,

is included in the instance f (I). For example, if the clause (x2, x̄5, x6) is in
C, then the constraint x2 + (1 − x5) + x6 � 1 is part of the instance f (I).
Also, each Boolean variable xi will have the constraint that xi = 0 or 1.

Finally, the objective function is
n∑

i=1
wixi . Let X= (x1, x2, . . . , xn)∈{0,1}n be

a solution that satisfies all of the clauses in C. By construction, x satisfies
all of the constraints for instance f (I). Therefore, letting q(s) = s for all
s ∈ SOL(I ), it then follows that mMWB3S(I, s) = mZOIP (f (I ), q(s)). Hence,
MAX Weighted 3-SAT neighborhood transforms to ZOIP.

Armstrong (2002) shows that many other problems are NPO-complete
with respect to neighborhood transformations. Theorem 5 shows that there
exists a large class of discrete optimization problems such that every prob-
lem in that class neighborhood transforms to MAX SAT. The following
definition from Ausiello et al. (1995) is needed to prove this result.

DEFINITION 1. (Ausiello et al. 1995), Let a �n-formula (respectively,
a �n-formula) be a prefix first-order formula with N alternating blocks
of quantifiers beginning with ∃ (respectively, ∀). The class MAX-�n

(respectively, MAX-�n) consists of maximization problems A whose
instances and solutions are finite structures I and S, respectively, and the
optimum measure on input I is definable by the expression

m∗(I )=max
S

|{x:ϕ(x, S, I )}|,
where ϕ is a �n-formula (respectively, a �n-formula) and x is a tuple of
fixed dimension whose components range over the domain of I .

The first part of the proof of Theorem 5 is adapted from a proof in
Papadimitriou and Yannakakis (1991). They prove that every problem in
MAX-�0 L-reduces to MAX SAT. The L-reduction is a restricted type of
transformation between optimization problems, defined for addressing ap-
proximability issues. Their proof is extended to show that A neighborhood
transforms to MAX SAT for all problems A in MAX-�0. Therefore, the
proof given in Papadimitriou and Yannakakis (1991) is a nice example of
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a transformation that preserves approximability but does not preserve local
structure.

THEOREM 5. For A∈ MAX-�0, A neighborhood transforms to MAX SAT.
Proof. Let A∈ MAX-�0. From the definition of MAX-�0, the objective

function value may be written as m(s)=|{x:ϕ(x, s, I )}|, where ϕ is a quan-
tifier free first order formula, x is a tuple of fixed dimension whose compo-
nents range over the domain of I , and S is the structure corresponding to
a feasible solution. Suppose I is an instance of A. For instance I , let ϕ1,
ϕ2, . . . , ϕm be formulae that correspond to the possible values of x. There-
fore, the problem of maximizing the set of values x that satisfy ϕ is reduced
to the problem of maximizing the set of formulae ϕi that can be satisfied
by a truth assignment. Each formula ϕi will be transformed into a set of
clauses Ci . Consider the Boolean circuit corresponding to the formula ϕi

(where the inputs are the original variables of ϕi) and represent all of the
gates by clauses over a set of Boolean variables that contains the original
variables of ϕi . The representation of the gates for formula ϕi will be as
follows:

(1) If g is a NOT gate with input a, Ci includes the clauses (g, a) and
(ḡ, ā).

(2) If g is a AND gate with inputs a and b, Ci includes the clauses (ḡ, a),
(ḡ, b), and (g, ā, b̄).

(3) If g is a OR gate with inputs a and b, Ci includes the clauses (g, ā),
(g, b̄), and (ḡ, a, b).

(4) If g is the output gate, Ci includes the clause (g).

This transformation is designed in such a way that any truth assignment
over the Boolean variables that make up the clauses in Ci can be extended
to satisfy all but one clause (the clause corresponding to the output gate)
of Ci . Let C ′ =C1 ∪C2 ∪· · ·∪Cm and X′ denote the set of Boolean variables
over which C ′ is defined. Let M denote the number of clauses in C ′. There-
fore, given a solution S for instance I with value m – k, for some nonneg-
ative integer k, a unique truth assignment for X′ can be constructed such
that all but k clauses of C ′ are satisfied.

It remains to show that A neighborhood transforms to MAX SAT. Let
i be an integer such that 1 � i � m and define C ′

i = {(cj , zip) : cj ∈ Ci and
cj is not the output gate of Ci , 1 �p �m} ∪ {(z̄ip) : 1 �p �m} ∪ {(z̄ip, zil) :
1 �p, l �m,p = l}, where the ′z′ variables are additional variables needed
for the neighborhood transformation. The instance f (I) of MAX SAT is
given by C ′′ = C ′ ∪C ′

1 ∪C ′
2 ∪ · · · ∪C ′

m and X′′ =X′ ∪ {zip : 1 � i, p �m}. Let
S be a feasible solution for instance I such that m(S) = m – k for some
nonnegative integer k. Define q1(S) to be the corresponding truth assign-
ment t :X′ →{0,1} that satisfies all clauses in m – k of the sets C1,
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C2, . . . ,Cm and satisfies all but one clause in the remaining k sets. Now, for
each truth assignment t :X′ →{0,1}, define q2(t) to be the truth assignment
t ′′ :X′′ →{0,1} such that t ′′(x) = t (x) for all x ∈ X′ and t ′′(x) = 0 for all
x ∈X′′ –X′. The transformation of solutions in the definition of a neighbor-
hood transformation is given by q2(q1(S)) for all solutions S of instance I .
Given two solutions S1 and S2 for the instance I such that m(S1)�m(S2),
then q2(q1(S1)) must satisfy at least as many clauses as q2(q1(S2)). Also,
given two solutions S1 and S2 for the instance I such that m(S1)>m(S2),
then q2(q1(S1)) satisfies more clauses than q2(q1(S2)). Note that for any
solution S for the instance I , q2(q1(S)) satisfies at least |C ′′| – m clauses.

Given a truth assignment t ′′ : X′′ → {0,1} such that t ′′(x) = 1, for some
x ∈X′′ – X, then at least m clauses of C ′′ are not satisfied. Moreover, any
truth assignment t ′′ that does not satisfy every clause in Ci (except possibly
the clause corresponding to the output gate of Ci , for i = 1,2, . . . ,m) will
not satisfy at least m clauses of C ′′. Therefore, it follows that the number
of clauses satisfied by any truth assignment in q2(q1(SOL(I )) is at least as
many as the number satisfied by any truth assignment not in q2(q1(SOL(I ))
≡ q. The function q and its inverse are computable in polynomial time
in the length of instance I . Therefore, A neighborhood transforms to
MAX SAT.

5. Conclusion and Future Directions

This paper analyzed the complexity of effective neighborhood functions
for NP-hard discrete optimization problems. To this end, the concept of
an order transformation was introduced. Order transformations preserve
the exact structure from one discrete optimization problem to another
discrete optimization problem in terms of the ordering of the objective
function values. A restricted type of order transformation, called a neigh-
borhood transformation, is introduced which preserves polynomially com-
putable neighborhood functions between discrete optimization problems.
This paper shows that there are NPO-complete problems with respect to
neighborhood transformations. It was shown that MWBS, MCWS, and
ZOIP are all NPO-complete with respect to neighborhood transformations.
These completeness results establish the difficulty in finding stable neigh-
borhood functions for these NP-hard discrete optimization problems. The
completeness results also demonstrate that it is very unlikely for these
optimization problems to have a polynomially computable neighborhood
function with a limited number of L-locals. Using the propositions in
Section 3 together with the completeness results, the following results are
verified:
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(1) If there exists a stable neighborhood function for one of the problems
MWBS, MCWS, or ZOIP, then every problem in NPO has a stable
neighborhood function.

(2) If there exists a polynomially computable neighborhood function for
one of MWBS, MCWS, or ZOIP, in which the number of L-locals is
bounded above by k, then every problem in NPO has a polynomially
computable neighborhood function in which the number of L-locals is
bounded above by k.

(3) If there exists a polynomial time algorithm to find the kth best solu-
tion (or better) for instances of one of MWBS, MCWS, or ZOIP, then
every problem in NPO+ has a polynomial time algorithm to find the
kth best solution (or better).

(4) If MWBS, MCWS, or ZOIP is in PGS, then every problem in NPO is
in PGS.

These results suggest several other research directions. It would be use-
ful to find other problems that are complete with respect to neighborhood
transformations (Armstrong, 2002). In particular, it is desirable to show
that every problem in a large set of NPO problems, in which the corre-
sponding decision problem is NP-complete, is NPO-complete with respect to
neighborhood transformations. This result may be difficult to obtain due to
the restricted nature of neighborhood transformations. Therefore, another
goal is to determine what properties of NP-hard discrete optimization prob-
lems indicate that it will be NPO-complete with respect to neighborhood
transformations. Research is in progress to study the characteristics of
polynomially computable neighborhood functions for NP-hard discrete opti-
mization problems. The overall purpose of this research is to gain a better
understanding of the properties of NP-hard discrete optimization problems
in terms of local search algorithm characteristics.
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